Teaching and Research: Bibliographic Essays

Life Sciences in the Twentieth Century

by Garland E. Allen


By the late nineteenth century various biologists began to seek ways of incorporating more experimental methods and causal explanation into what had been basically a descriptive science. This trend was initially most prominent in embryology (developmental biology, in today’s terms), but it soon spread to other fields such as heredity, evolution, and, ultimately, ecology, and animal behavior.

A useful collection of contemporary reviews papers discussing the state of embryological and morphological work in the 1890s comes from the Marine Biological Laboratory’s famous Friday evening lecture series (1889-1899). Selected papers from this series have been reprinted with commentary by Jane Maienschein as Defining Biology: Lectures from the 1890s (Cambridge, Mass.: Harvard Univ. Press, 1986). This collection provides easy access to some authoritative but not overly technical primary source material that could easily be assigned to undergraduate students.

Secondary material on Wilhelm Roux, Hans Driesch, and early experimentation is not as plentiful as the subject demands. A brief and highly informative history of the idea of experimentation on embryos is Frederick Churchill’s “Chabry, Roux, and the Experimental Method in Nineteenth- Century Embryology,” in Foundations of Scientific Method, edited by Ronald Giere and Richard S. Westfall (Bloomington: Indiana Univ. Press, 1973), pp. 161-205. A significant issue in the Roux-Driesch controversy was the old seventeenth- and eighteenth-century debate over epigenesis and preformation–whether the embryo develops by organizing less-formed material into the structure of embryonic parts (epigenesis) or merely grows in size from an already-formed, miniature adult (preformation). An informative and insightful study of that controversy, from Roux and Driesch to twentieth-century figures such as C. O. Whitman, E. B. Wilson, and E. G. Conklin, is Maienschein’s “Preformation or New Formation–or Neither or Both?” in A History of Embryology, edited by T.J. Herder, J. A. Witkowski, and C.C. Wylie (Cambridge: Cambridge Univ. Press, 1986), pp. 73-108. The Roux-Driesch debate is clear and straightforward, and easily accessible to almost all students.

Jane Oppenheimer’s Essays in the History of Embryology and Biology (Cambridge: MIT Press, 1967) contains number of valuable contributions, most of which deal with early or mid-twentieth- century embryology. Viktor Hamburger’s essay “Embryology,” in The Evolutionary Synthesis, edited by Emst Mayr and William Provine (Cambridge, Mass.: Harvard Univ. Press, 1980), pp. 96-112, provides an excellent overview of the growth of the whole field of embryology in the twentieth century.

Among the most significant developments in experimental embryology are those of Hans Spemann (1869-1941) and his school at Freiburg between 1900 and 1933. Despite his eminence and his receipt of the Nobel Prize in 1935, Spemann has enjoyed little attention from historians. Viktor Hamburger has written several essays on this school, of which he was a preeminent graduate, with special reference to the most important concept to emerge from their work, the “organizer theory.” A general perspective is given in “Hans Spemann and the ‘Organizer Concept,’ ” Experientia 1969, 25:1121-1125. A more recent essay by Hamburger details the work of one of Spemann’s most notable women students and her role in discovering the organizer concept: “Hilde Mangold, Co-discoverer of the Organizer,î Journal of the History of Biology, 1984, 7:1-11. Hamburger has also prepared a book-length monograph on the Spemann school: The Heritage of Experimental Embryology: Hans Spemann and the Organizer (Oxford Univ. Press, 1988).

Kenneth R. Manning’s Black Apollo of Science: The Life of Ernest Everett Just (New York: Oxford Univ. Press, 1983) is probably closer to institutional and social history than to history of embryology per se, yet Manning’s biography of one of America’s few prominent black scientists includes discussion of Just’s various studies on fertilization, early embryonic development, and the properties of the cell surface. It also includes a great deal of information on racism in science, the problems of funding scientific research, hiring practices in American universities, black education, work in research institutions such as the Marine Biological Laboratory, and the relationship between the American and European scientific (largely, of course, biological) communities in the period 1920- 1940. Black Apollo can thus serve as a useful introduction to many aspects of the social history of American biology.